Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3332, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620830

RESUMO

Earth's core is composed of iron (Fe) alloyed with light elements, e.g., silicon (Si). Its thermal conductivity critically affects Earth's thermal structure, evolution, and dynamics, as it controls the magnitude of thermal and compositional sources required to sustain a geodynamo over Earth's history. Here we directly measured thermal conductivities of solid Fe and Fe-Si alloys up to 144 GPa and 3300 K. 15 at% Si alloyed in Fe substantially reduces its conductivity by about 2 folds at 132 GPa and 3000 K. An outer core with 15 at% Si would have a conductivity of about 20 W m-1 K-1, lower than pure Fe at similar pressure-temperature conditions. This suggests a lower minimum heat flow, around 3 TW, across the core-mantle boundary than previously expected, and thus less thermal energy needed to operate the geodynamo. Our results provide key constraints on inner core age that could be older than two billion-years.

2.
Adv Sci (Weinh) ; 7(2): 1901668, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993284

RESUMO

The insulator-to-metal transition in dense fluid hydrogen is an essential phenomenon in the study of gas giant planetary interiors and the physical and chemical behavior of highly compressed condensed matter. Using direct fast laser spectroscopy techniques to probe hydrogen and deuterium precompressed in a diamond anvil cell and laser heated on microsecond timescales, an onset of metal-like reflectance is observed in the visible spectral range at P >150 GPa and T ≥ 3000 K. The reflectance increases rapidly with decreasing photon energy indicating free-electron metallic behavior with a plasma edge in the visible spectral range at high temperatures. The reflectance spectra also suggest much longer electronic collision time (≥1 fs) than previously inferred, implying that metallic hydrogen at the conditions studied is not in the regime of saturated conductivity (Mott-Ioffe-Regel limit). The results confirm the existence of a semiconducting intermediate fluid hydrogen state en route to metallization.

3.
Sci Adv ; 4(10): eaat9776, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30333994

RESUMO

Hydrogen-rich hydrides attract great attention due to recent theoretical (1) and then experimental discovery of record high-temperature superconductivity in H3S [T c = 203 K at 155 GPa (2)]. Here we search for stable uranium hydrides at pressures up to 500 GPa using ab initio evolutionary crystal structure prediction. Chemistry of the U-H system turned out to be extremely rich, with 14 new compounds, including hydrogen-rich UH5, UH6, U2H13, UH7, UH8, U2H17, and UH9. Their crystal structures are based on either common face-centered cubic or hexagonal close-packed uranium sublattice and unusual H8 cubic clusters. Our high-pressure experiments at 1 to 103 GPa confirm the predicted UH7, UH8, and three different phases of UH5, raising confidence about predictions of the other phases. Many of the newly predicted phases are expected to be high-temperature superconductors. The highest-T c superconductor is UH7, predicted to be thermodynamically stable at pressures above 22 GPa (with T c = 44 to 54 K), and this phase remains dynamically stable upon decompression to zero pressure (where it has T c = 57 to 66 K).

4.
Nano Lett ; 18(11): 6948-6953, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30244582

RESUMO

Excimers, a portmanteau of "excited dimer", are transient species that are formed from the electronic interaction of a fluorophore in the excited state with a neighbor in the ground state, which have found extensive use as laser gain media. Although common in molecular fluorophores, this work presents evidence for the formation of excimers in a new class of materials: atomically precise two-dimensional semiconductor nanoplatelets. Colloidal nanoplatelets of CdSe display two-color photoluminescence resolved at low temperatures with one band attributed to band-edge fluorescence and a second, red band attributed to excimer fluorescence. Previously reasonable explanations for two-color fluorescence, such as charging, are shown to be inconsistent with additional evidence. As with excimers in other materials systems, excimer emission is increased by increasing nanoplatelet concentration and the degree of cofacial stacking. Consistent with their promise as low-threshold gain media, amplified spontaneous emission emerges from the excimer emission line.

5.
Nat Commun ; 9(1): 2624, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980680

RESUMO

Diatomic nitrogen is an archetypal molecular system known for its exceptional stability and complex behavior at high pressures and temperatures, including rich solid polymorphism, formation of energetic states, and an insulator-to-metal transformation coupled to a change in chemical bonding. However, the thermobaric conditions of the fluid molecular-polymer phase boundary and associated metallization have not been experimentally established. Here, by applying dynamic laser heating of compressed nitrogen and using fast optical spectroscopy to study electronic properties, we observe a transformation from insulating (molecular) to conducting dense fluid nitrogen at temperatures that decrease with pressure and establish that metallization, and presumably fluid polymerization, occurs above 125 GPa at 2500 K. Our observations create a better understanding of the interplay between molecular dissociation, melting, and metallization revealing features that are common in simple molecular systems.

6.
Sci Rep ; 5: 13582, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26323635

RESUMO

Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O2(2-)) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

7.
J Phys Chem Lett ; 6(14): 2786-93, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26266864

RESUMO

Electron attachment to closed-shell molecules is a gateway to various important processes in the gas and condensed phases. The properties of an electron-attached state, such as its energy and lifetime as well as the character of the molecular orbital to which the electron is attached, determine the fate of the anion. In this experimental and theoretical study of copper and silver fluoride anions, we introduce a new type of metastable anionic state. Abrupt changes in photoelectron angular distributions point to the existence of autodetaching states. Equation-of-motion coupled-cluster singles and doubles calculations augmented by a complex absorbing potential identify some of these states as Σ and Π dipole-stabilized resonances, a new type of shape resonance. In addition, these molecules support valence and dipole-bound states and a Σ resonance of charge-transfer character. By featuring five different types of anionic states, they provide a vehicle for studying fundamental properties of anions and for validating new theoretical approaches for metastable states.

8.
J Chem Phys ; 142(21): 214308, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049497

RESUMO

Optical and synchrotron x-ray diffraction diamond anvil cell experiments have been combined with first-principles theoretical structure predictions to investigate mixtures of N2 and H2 up to 55 GPa. Our experiments show the formation of structurally complex van der Waals compounds [see also D. K. Spaulding et al., Nat. Commun. 5, 5739 (2014)] above 10 GPa. However, we found that these NxH (0.5 < x < 1.5) compounds transform abruptly to new oligomeric materials through barochemistry above 47 GPa and photochemistry at pressures as low as 10 GPa. These oligomeric compounds can be recovered to ambient pressure at T < 130 K, whereas at room temperature, they can be metastable on pressure release down to 3.5 GPa. Extensive theoretical calculations show that such oligomeric materials become thermodynamically more stable in comparison to mixtures of N2, H2, and NH3 above approximately 40 GPa. Our results suggest new pathways for synthesis of environmentally benign high energy-density materials. These materials could also exist as alternative planetary ices.

9.
J Phys Chem A ; 118(35): 7249-54, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24417574

RESUMO

The use of photoelectron angular distributions to provide structural details of cluster environments is investigated. Photoelectron spectra and angular distributions of I(-)·(H2O)2 and I(-)·(CH3CN)2 cluster anions are recorded over a range of photon energies. The anisotropy parameter (ß) for electrons undergoes a sharp change (Δßmax) at photon energies close to a detachment channel threshold. I(-)·(H2O)2 results show the relationship between dipole moment and Δßmax to be similar to that observed in monosolvated I(-) detachment. The Δßmax of the 4.0 eV band in the I(-)·(CH3CN)2 photoelectron spectrum suggests a dipole moment of 5-6 D. This is consistent with predictions of a hydrogen bonded conformer of the I(-)·(CH3CN)2 cluster anion [Timerghazin, Q. K.; Nguyen, T. N.; Peslherbe, G. H. J. Chem. Phys. 2002, 116, 6867-6870].

10.
Phys Chem Chem Phys ; 16(2): 497-504, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24108412

RESUMO

A photodissociative study of CuO2(-) is presented using a combination of energy and time domain photoelectron spectroscopy. Ion source conditions are used that solely produce linear OCuO(-). Photodissociation of this isomer to produce Cu(-) + O2 is conclusively demonstrated at wavelengths between 765 and 340 nm. Nanosecond pulsed photoexcitation at wavelengths shorter than 340 nm produces single photon detachment transitions from the first excited state of CuO2(-). At longer wavelengths narrow Cu(-) fragment transitions are observed as a result of a sequential two photon process. In addition, the longer wavelengths produce a weak, broad two photon dependent signal, the result of detachment of the dissociating linear isomer. Time resolved pump-probe measurements reveal a long timescale growth (up to 150 ps) of the Cu(-) fragment yield, consistent with the unfavorable starting geometry for the dissociative process and indicating a potential energy surface which has one or more substantial barriers to dissociation.


Assuntos
Cobre/química , Oxigênio/química , Teoria Quântica , Ânions/química , Processos Fotoquímicos , Espectroscopia Fotoeletrônica , Fatores de Tempo
11.
J Chem Phys ; 136(11): 114303, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22443760

RESUMO

Photoelectron imaging results are presented for I(-)[middle dot]X cluster anions (X = CO(2), C(4)H(5)N [pyrrole], (CH(3))(2)CO, CH(3)NO(2)). The available detachment channels are labeled according to the neutral iodine atom states produced (channel I ≡ (2)P(3/2) and channel II ≡ (2)P(1/2)). At photon energies in the vicinity of the channel II threshold these data are compared to previously reported results for I(-)[middle dot]X (X = CH(3)CN, CH(3)Cl, CH(3)Br, and H(2)O). In particular, these results show a strong connection between the dipole moment of the solvent molecule and the behavior of the channel I photoelectron angular distributions in this region, which is consistent with an electronic autodetachment process. The evolution of the channel II:channel I branching ratios in this excitation regime supports this contention.

12.
J Chem Phys ; 134(21): 214301, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21663356

RESUMO

We present the results of a photoelectron imaging study of the I(-)·(CH(3)I)(2) cluster anion over excitation wavelengths 355-260 nm. The resulting spectra and photoelectron angular distributions (PADs) suggest extensive electron-molecule interaction following photoexcitation. Fragmentation channels are observed subsequent to excitation between 355 and 330 nm. The origin of these features, which begin 200 meV and peak 70 meV below the X band direct detachment threshold, is described in terms of a predissociative dipole bound state. The nature of the fragments detected and the energetics of the channel opening argue strongly in favor of an asymmetric, head to tail cluster anion geometry posited by Dessent et al. [Acc. Chem. Res. 31, 527 (1998)]. Above the direct detachment threshold, PADs display evidence of phenomena akin to electron-molecule scattering. The fragment anions disappear above the X band threshold but reappear some distance below the second (A) direct detachment band. At these energies there is also rapid variation of the X band PAD, an observation attributed to autodetachment via spin-orbit relaxation of the iodine core of the cluster.

13.
J Chem Phys ; 134(18): 184315, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21568514

RESUMO

Cl(-)·CH(3)I cluster anion photoelectron images are recorded over a range of detachment wavelengths in the immediate post threshold region. The photoelectron spectral features fall into two categories. A number of weak, photon energy dependent transitions are observed and attributed to atomic anion fragmentation products. Several more intense, higher electron binding energy transitions result from single photon cluster anion detachment. Comparison with I(-)·CH(3)I suggests that the detachment process is more complicated for Cl(-)·CH(3)I. The single photon transition spacing is consistent with CH(3)I ν(3) mode excitation, but the two distinct vibronic bands of I(-)·CH(3)I detachment are not easily distinguished in the Cl(-)·CH(3)I spectra. Similarly, while the spectral intensities for both cluster anions show non-Franck Condon behavior, the level of vibrational excitation appears greater for Cl(-)·CH(3)I detachment. These observations are discussed in terms of low lying electronic states of CH(3)I along the C-I coordinate, and the influence of the CH(3)I moiety on the neutral halogen atom states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...